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Estimation of Optimal Fiducial Target Registration
Error in the Presence of Heteroscedastic Noise

Burton Ma*, Mehdi H. Moghari, Randy E. Ellis, and Purang Abolmaesumi

Abstract—We study the effect of point dependent (het-
eroscedastic) and identically distributed anisotropic fiducial
localization noise on fiducial target registration error (TRE). We
derive an analytic expression, based on the concept of mechanism
spatial stiffness, for predicting TRE. The accuracy of the pre-
dicted TRE is compared to simulated values where the optimal
registration transformation is computed using the heteroscedastic
errors in variables algorithm. The predicted values are shown to
be contained by the 95% confidence intervals of the root mean
square TRE obtained from the simulations.

Index Terms—Heteroscedastic noise, image-guided surgery,
point-based registration, registration error.

I. INTRODUCTION

F INDING the rigid transformation that best matches one
point set to another when the point-to-point correspon-

dences are known is a problem that has been encountered in
many fields of research. The problem is most commonly re-
ferred to as the fiducial registration problem in computer-aided
surgery. Least-squares solutions, for either the rotational com-
ponent or the complete rigid transformation, have been pro-
posed by numerous authors; [1] and [2] contain discussions of
the history of solutions to the problem. Two solutions commonly
cited in the medical computing literature are the singular value
decomposition method of Arun, Huang, and Blostein [3] and
the unit quaternion method of Horn [4]. The use of least-squares
assumes that one set of points is noise free and the other set of
points is contaminated with independent, identically distributed
(iid), isotropic, zero-mean Gaussian noise.

One application of fiducial registration in computer-aided
surgery is the measurement of coordinate systems defined by
optically tracked reference frames. Optical tracking systems
that measure the spatial location of points of infrared light are
commonly used in commercial navigated surgical systems.
These systems measure coordinate reference frames (CRFs),
which are essentially a set of infrared emitting or reflecting
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fiducial markers, that are rigidly attached to the tracked object.
In some tracking systems, the measurement precision is worse
in the viewing direction of the cameras; hence, the noise in
the measured point locations is anisotropic. Khadem et al. [5]
analyzed the jitter for several configurations of optical trackers;
jitter was defined as the standard deviation of repeated mea-
surements of the location of a stationary CRF. They found that
the jitter was anisotropic with the greatest deviation occurring
in the viewing direction of the tracking system. Their results
showed an anisotropy as large as a factor of five or more when
using a Polaris tracking system with a passive target.

Ohta and Kanatani [6] described an algorithm designed to ac-
commodate point dependent (heteroscedastic) Gaussian noise
in both the model and measurement coordinate systems. Their
algorithm produced the optimal estimate of rotation using a
quaternion renormalization technique, and it required that the
noise covariances be specified to within a scalar factor. They
defined a covariance matrix for the axis-angle parameterization
of rotation, derived its lower bound, and showed that their algo-
rithm was optimal in the sense that it achieved the lower bound.
Their quaternion renormalization algorithm had smaller regis-
tration errors compared to a conventional least-squares algo-
rithm.

Matei [7] and Matei and Meer [8] described an algorithm
that produced optimal estimates of rotation and translation
under heteroscedastic noise. Their algorithm solved the het-
eroscedastic, multivariate errors-in-variables (HEIV) regression
problem corresponding to fiducial registration. Estimation of
the noise covariance matrices of the two point sets and the
confidence intervals were obtained using bootstrap techniques.
Their HEIV algorithm had smaller registration errors compared
to Ohta and Kanatani’s method in their experiments.

Pennec and Thirion [9] used an extended Kalman filter (EKF)
as part of a framework for registration using points and frames.
Their approach accommodated anisotropic noise in both sets of
points to be registered.

Moghari and Abolmaesumi [10] used the unscented
Kalman filter (UKF) to solve the fiducial registration
problem and estimate the covariance of the state parameters

, where was the translation
and was the vector of Euler angles. Given a suffi-
cient number of markers, their algorithm was able to estimate
the mean squared TRE and the distribution of TRE. Their work
appears to be an improvement over the EKF algorithm [9] with
regard to estimating TRE and its distribution [11].

Dorst [12] analyzed how noise in the measured registration
points affected the computed registration parameters. He de-
rived the covariance matrices for the estimated rotational and
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translational parameters given the noise covariances of the two
point sets to be registered; the derivation assumed identically
distributed noise.

Fitzpatrick et al. [2] derived an expression for expected fidu-
cial target registration error (TRE) in -dimensions. Target reg-
istration error is simply the magnitude where is the ex-
pected location of a target point and is the registered location
the target point. Their statistical derivation was performed as-
suming that the fiducial localization error (FLE) was accurately
modeled by a zero-mean, isotropic, iid Gaussian random vari-
able; Fitzpatrick and West [13] later derived the distribution of
TRE under the same noise model. The work by Wiles et al. [14]
produced expressions for the expected mean, covariance, and
rms of TRE under anisotropic FLE conditions assuming a least-
squares solution to the registration problem. The assumption
of a least-squares solution implied that the registration trans-
formation could be expressed as a singular value decomposi-
tion that made possible their statistical derivation. Most recently,
using maximum likelihood estimation, Moghari and Abolmae-
sumi [15] introduced a new solution that provides an estimate
for the distribution of TRE under nonidentical anisotropic FLE
conditions.

West and Maurer [16] applied their previous results [2], [13]
to design targets for optically tracked surgical instruments.
They studied primarily planar CRF configurations, although
they briefly discussed some of the expected effects of using
nonplanar CRFs. It was shown that the expected TRE could be
computed by summing in quadrature the individual TREs when
there is a composition of transformations (for instance, when
one CRF is measured relative to a second CRF).

A method for online estimation of TRE covariance has been
described in [17] and [18] that was an extension of the method
described by Hoff and Vincent [19]. Given an estimate of the
covariances of the feature detection error on the image plane of
each tracking camera, the covariances were propagated to pro-
duce the covariances of the FLE for each fiducial marker. The
FLE covariances were then propagated to produced the covari-
ance of the CRF pose, which was then propagated to produce
the TRE covariance. Covariance propagation was performed by
linearizing the measurement functions at each step of the prop-
agation.

We have attempted to estimate TRE by modeling the registra-
tion problem as an elastic mechanism where the mechanism (the
registration points) is suspended by linear springs. The small
displacement behavior of an elastic mechanism is governed by
the concept of spatial stiffnesses, which has been extensively
studied in the fields of robotics and mechanics. Our first attempt
at applying a spatial stiffness analysis to a registration problem
led to an estimate of an upper bound on TRE for fiducial reg-
istration under isotropic iid Gaussian fiducial localization noise
[20]. In a second conference paper, we derived the spatial stiff-
ness matrix for surface-based registration under isotropic iid
Gaussian point localization noise, and derived heuristics for op-
timizing registration point selection [21]; an extended version
appeared as a journal paper [22]. In a third conference paper,
we presented expressions for TRE for both fiducial and sur-
face-based registration under isotropic iid Gaussian noise condi-
tions [23]; the expression for fiducial TRE was identical to that

published by [2]. It can be shown that the stiffness matrices we
derived were based on first-order Taylor series approximations
of rotation and translation [24]. In a fourth conference paper, we
presented an expression for fiducial TRE under anisotropic iid
Gaussian noise [25].

We present three significant contributions in this paper. The
first contribution is a review of the aspects of mechanism spa-
tial-stiffness, that are relevant to our purposes, from the fields of
robotics and mechanics. The second contribution is the deriva-
tion of an equation that predicts the expected root mean square
TRE ( ) for fiducial registration with heteroscedastic
noise assuming an optimal (that is, not least-squares) regis-
tration algorithm. The third contribution is a comparison of
the predicted and simulated values obtained using a
least-squares registration algorithm (Horn’s method [4]) and
the HEIV algorithm. Our simulations show that our equation
reliably predicts under the assumed noise conditions
when the HEIV algorithm is used. We also contribute simula-
tion results comparing the behavior of using HEIV
algorithm and Horn’s algorithm.

II. SPATIAL-STIFFNESS OF A PASSIVE MECHANISM

A common problem in mechanics is determining the relation-
ship between the displacement of a mechanism and the reaction
forces that arise. For small displacements about an equilibrium
configuration, this stiffness relationship is often assumed to be
linear and, therefore, is characterized by a spatial-stiffness ma-
trix. This section is a review of the literature discussing the struc-
ture and analysis of stiffness matrices. We first provide some
mathematical background before proceeding to the literature re-
view. The mathematical notation we use is generally consistent
with that of [26] and [27].

A. Screws, Twists, and Wrenches

A rigid transformation of an object is one that preserves both
distances and angles; it comprises a rotation and translation. A
screw transformation is one representation of a rigid transforma-
tion, consisting of a rotation about an axis followed by a trans-
lation parallel to the same axis. It is characterized by its axis,
magnitude, and pitch.

• The screw axis is defined by a point and a unit vector
; is a point on the axis and is the direction of the

axis. If there is no rotation then the screw represents a pure
translation and is taken to be the origin.

• The magnitude of a screw is the amount of rotation,
measured in radians, that occurs about the axis. For a pure
translation is taken to be the magnitude of the transla-
tion.

• The pitch of a screw is the ratio of translation distance
to rotation angle. A zero pitch screw represents a pure ro-
tation. A pure translation is a screw with .

A twist is the linear and angular velocity of a rigid body about
an instantaneous screw axis. It is a 6-vector where

is linear velocity and is ro-
tational velocity. A twist is often used to represent a small dis-
placement rather than velocity, in which case is linear trans-
lation and is rotation. The screw representation of a twist is

axis
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(1)

magnitude

(2)

pitch

(3)

A wrench is the force and moment acting on a body at a point.
It is a six-vector where is force
and is torque. The screw representation of a
wrench is

axis

(4)

magnitude

(5)

pitch

(6)

B. Spatial Stiffness Matrix

Hooke famously modelled a simple unstretched linear spring.
The work done in stretching or compressing the spring by
a small amount is given by where is a
scalar constant. Taking the gradient of the potential yields the
force acting on the spring which is Hooke’s
law. Note that the Hessian of is .

Calculating the force exerted on a body by taking the gra-
dient of a potential scalar field is a general principle in physics.
For example, the force of gravity on a body with mass, and the
force an electric field exerts on a charged particle, are two in-
stances where forces can be associated with potential energy.
More generally, both the net force and torque exerted on a body
are required. The stiffness matrix relates wrenches (force and
torque) to small twist displacements as

(7)

which is a generalization of Hooke’s law. Observe that force is
dependent on rotational displacement via the submatrix , and
torque is dependent on linear displacement via the submatrix

. If is nonzero then the rotational and translational aspects
of stiffness are coupled.

The inverse relationship of stiffness is compliance, which re-
lates twists to wrenches. The compliance matrix, , is the in-
verse of the stiffness matrix,

(8)

The spatial-stiffness and compliance matrices are often used
to analyze the elastic behavior of a mechanism about an equi-
librium state. Consider an unloaded, unactuated, kinematically
unconstrained rigid body elastically suspended in space by a
parallel network of simple springs. In this situation the stiffness
matrix will be symmetric because two opposite twists of equal
magnitude should cancel around the equilibrium configuration,
and is given by the Hessian of the potential energy .
is positive definite1 because an agent must do positive work (ex-
pend energy) to produce a displacement of the mechanism.

1) Structure of the Stiffness Matrix: Several approaches to
studying the structure of the spatial-stiffness matrix have previ-
ously been summarized [28].

The recent analysis of the structure of the spatial-stiffness
matrix originated with Loncarić [29] who used a Lie group ap-
proach to derive a normal form of the stiffness matrix. Loncarić
chose to define the normal form as the one that maximally de-
coupled the rotational and translational components of stiffness;
that is, a stiffness matrix in normal form has the simplest form
of . He showed that, in normal form, and are symmetric
and is diagonal. This was accomplished by deriving the for-
mula for transforming a stiffness matrix by a rigid change of
coordinate frame, and considering the effect of such a transfor-
mation on . The origin of the transformed frame was called
the center of stiffness. The normal form is not unique [28]: it is
possible to diagonalize either or and have symmetric . It
has been shown that any symmetric positive semi-definite stiff-
ness matrix can be written in normal form [30].

Patterson and Lipkin [31] examined the structure of com-
pliance matrices by looking for twists and wrenches that were
multiples of the same screw, that is to say, they analyzed the
eigenvalue problem for compliance matrices. They established
several properties of the eigenvalues and eigenscrews but ad-
mitted that in “practice there are few direct applications for
eigenscrews” (p. 578). They went on to describe a more prac-
tical analysis based on the concept of a compliant axis.

The definition of compliant axis was given as: “A compliant
axis exists when a force produces a parallel linear deformation,
and rotational deformation about the line of the force produces
a parallel couple” [32, p. 582]. This contrasts sharply with the
general case where a force produces a nonparallel translation
and a rotational displacement. The compliant axis was gener-
alized to the partial compliant axis, twist compliant axis, and
wrench compliant axis in subsequent work [31].

Twist-compliant and wrench-compliant axes are fundamental
to the approach used in this article to analyze fiducial registra-

1If it is possible for an agent to do zero work to displace the mechanism then
� is positive semi-definite.
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tion. A twist-compliant axis is one where a twist deformation
about the axis produces a pure torque parallel to the axis. This
can be expressed as an eigenvalue problem

(9)

which can be solved by premultiplying both sides by

(10)

Substituting (8) leads to an eigenvalue problem involving the
3 3 matrix

(11)

where the three eigenvalues of are the rotational compli-
ances (and the are the rotational stiffnesses). The three twists

obtained by substituting the eigenvalues and eigen-
vectors into (10) are called eigentwists. An eigentwist produces
a pure torque about the twist-compliant axis.

A wrench-compliant axis is one for which a force parallel to
the axis produces a pure linear displacement that is parallel to
the axis. It is associated with the eigenvalue problem

(12)

which can be solved by premultiplying both sides by

(13)

Substituting (7) into (13) leads to an eigenvalue problem in-
volving the 3 3 matrix

(14)

where the three eigenvalues of are the linear stiffnesses
(and the are the linear compliances). The three wrenches

obtained by substituting the eigenvalues and eigen-
vectors (13) are called eigenwrenches. An eigenwrench pro-
duces a pure linear translation is the direction of a wrench-com-
pliant axis.

A configuration-space approach was used by Lin et al. [27]
to quantify the quality of a compliant grasp or fixture; in doing
so, the authors managed to rederive the rotational and linear
stiffneses, and the twist and wrench-compliant axes [31]. To de-
rive the rotational stiffnesses and the twist-compliant axes, they
looked for the subspace of small displacements that produced
pure torque (or zero force)

(15)

This implies that is the set of twists parameterized by rota-
tional displacement

(16)

It was shown that the restriction of the stiffness matrix to the
subspace is given by

(17)

The inverse of a matrix partitioned into blocks is given by
[33] as

where

(18)

Inspection of the lower-right block of (18) leads to the conclu-
sion that

(19)

Recall that (11) defines the directions of a twist-compliant axes
as the eigenvectors of and the rotational compliances as
the eigenvalues of . Because , the eigenvec-
tors of are the same as the eigenvectors of , and the eigen-
values of are the reciprocals of the eigenvalues of ; thus,
the eigenvalues of are the rotational stiffnesses . The
were named the principal rotational stiffnesses, and they proved
that the stiffnesses were invariant under a rigid coordinate frame
transformation by applying the coordinate frame transformation
law of stiffness matrices to .

To derive the translational stiffnesses and the wrench-com-
pliant axes, Lin et al. [27] looked for the subspace of
wrenches that produced pure translation (or zero rotational
displacement)

(20)

This implies that is the set of wrenches parameterized by
force

(21)

It was shown that the restriction of the compliance matrix to the
subspace is given by

(22)

Inspection of the upper-left block of (18) leads to the conclusion
that

(23)

Recall that (14) defines the directions of a wrench-compliant
axes as the eigenvectors of and the linear stiffnesses as the
eigenvalues of . Because , the eigenvectors
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Fig. 1. The displacement of a point under a screw motion. The point rotates by
an amount � about the axis with direction ���, then translates parallel to the axis
by an amount ��. The net distance of displacement is �.

of are the same as the eigenvectors of , and the eigen-
values of are the reciprocals of the eigenvalues of ; thus,
the eigenvalues of are the linear compliances . The

were named the principal translational stiffnesses, and they
proved that the stiffnesses were invariant under a rigid coordi-
nate frame transformation.

A frame invariant quality measure of compliant grasps based
on the smallest principal stiffness was also derived [27]. To do
so, a meaningful way to compare the translational and rotational
stiffnesses was formulated by considering the deflection of the
grasped object. Consider a twist displacement of magnitude
about the screw axis where is an eigenvector of

and is given by (15). A point located distance from the
screw axis will be displaced by length

(24)

where the approximation is the Maclaurin series approxima-
tion. This is illustrated in Fig. 1. Because the twist is about a
twist-compliant axis, it generates pure torque and the potential
energy associated with the displacement is (the po-
tential energy associated with a torsional spring with spring con-
stant displaced by radians). The rotational stiffness is con-
verted to its equivalent linear stiffness by associating the dis-
placement magnitude with a linear spring of stiffness ;
the potential energy is and it must be equal to

. This yields the equivalent rotational stiffnesses

(25)

which can be compared directly to the principal linear stiff-
nesses. The stiffness quality measure is defined as

(26)

characterizes the least constrained displacement of the mech-
anism; maximizing will minimize the worst-case displace-
ment of the mechanism.

III. METHOD

A. Spatial Stiffness Matrix for Fiducial Registration

A spatial-stiffness model of fiducial registration treats the
markers as a passive rigid mechanism suspended by linear
springs. The springs elongate and compress to exert a restoring
force if the markers are displaced. The amount of extension
of the springs, and hence the energy stored in the springs, is
determined by the FLE.

We also assume that the noise-free fiducial marker loca-
tions , where , are known.
We also assume that the 3D FLE for the th fiducial can be mod-
eled as a zero-mean Gaussian variable with covariance matrix

. The covariance matrices are expressed in the same coordi-
nate frame as the marker locations.

Consider the situation where is the diagonal matrix
(the fiducial localization noise is aligned

with the -, -, and -axes) with variances , , and .
Our model uses linear springs aligned in the -, -, and -di-
rections to represent the the effect of FLE. The spring constants

, , and are chosen to be equal to the reciprocals of
the variances in order to model anisotropy in the noise. A linear
spring resists displacements only in directions parallel to its
length; thus, the force-displacement relationships of the three
springs can be written as

for a small linear displacement . The net force of the system
of springs is just the sum of the three forces, or

(27)

Note that the 3 3 diagonal matrix in the preceding equation is
the submatrix of in (7) that relates linear displacements to
force; thus, we have

(28)

where is the matrix of spring constants for axis aligned
noise.

For an arbitrary , we align the springs in the directions
of the principal components of and assign spring constants
equal to the reciprocals of the variances of the principal compo-
nents. To do so, we use the fact that can be diagonalized by a
change of coordinates represented by a rotation matrix [34]

(29)
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where is the matrix of normalized eigenvectors of and
the eigenvalues , , and of are the variances of the
principal components. We use three facts about matrices [33].

• Because is a positive definite Hermitian matrix, is
also a positive definite Hermitian matrix; hence, it is also a
covariance matrix.

• The eigenvectors of a matrix and its inverse are the same.
• The eigenvalues of a matrix and its inverse are reciprocals.

These three facts imply that diagonalizes such that

(30)

which is the matrix of spring constants for axis aligned noise
from (27). To align with the actual noise, we need to perform
a change of coordinates represented by , the inverse of the
diagonalizing rotation. A rigid change of coordinates affects the
submatrix of a stiffness matrix according to where

is the rotation part of the rigid transformation [28]; therefore,
the desired matrix of spring constants is

(31)
The spatial stiffness matrix is derived by applying an infin-

itesimal rigid displacement to the mechanism and computing
the Hessian of the potential energy stored in the linear springs.
Let the rigid displacement be made up of a small rotation

followed by a small translation
. The locations of the displaced markers are given

by . The potential energy stored in the springs
associated with the marker is

(32)

which is proportional to the squared Mahalanobis distance be-
tween and . It can be shown that the Hessian of
evaluated at zero displacement is

(33)

(34)

(35)

The stiffness matrix is .

B. TRE Estimation

We hypothesize that TRE can be estimated by considering
a constant amount of work done, , and calculating the dis-
placement of the system. The work done is taken to be the
sum of two constant components repre-
senting the energies required to respectively translate and rotate
the system. Our hypothesis is based on the work of Lin et al.
[27] who showed that the stiffnesses define the geometry of the
level-sets related to the elastic energy induced by compliant de-
formations.

Suppose that the elastic system of fiducial markers is trans-
lated by an amount in a direction parallel to where is
the eigenvector associated with the principal translational stiff-
ness . Such a translation will induce a TRE of magnitude

. The work done by this translation is ; simple
rearrangement yields the squared displacement per unit work
done . A similar argument can be used to obtain

and , the squared displacements per
unit work done in the directions parallel to and , respec-
tively. The squared translational TRE (per unit work done) is

(36)

Suppose the system is rotated about the axis where
is the eigenvector associated with the principal rotational stiff-
ness . Such a rotation will induce a TRE of magnitude .
The work done by this rotation is ; simple re-
arrangement yields the squared displacement per unit work done

. Using a similar argument for rotations about
and leads to a total squared displacement per unit work done
of

(37)

Assuming independence of the rotational and translational com-
ponents allows us to write the expected squared TRE per unit
energy for a target location as

(38)

1) Identical Isotropic FLE: Equation (38) can be simpli-
fied significantly if the fiducial localization noise distribution
is identical and isotropic. Because the principal stiffnesses are
frame invariant, we can apply any rigid change of coordinate
frame without affecting the estimated TRE. Let us choose a co-
ordinate frame such that the origin is the mean of the fiducial lo-
cations; that is, . Let the
total FLE magnitude be ; then the noise covariance for the
th fiducial is the diagonal matrix where

is the 3 3 identity matrix. Using (33)–(35) gives a stiff-
ness matrix

(39)
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Fig. 2. Fiducial configurations on a sphere of radius 100 mm centered at the origin. In cases �, �, and � , the fiducials are located in the ��-plane and � is the
indicated arc length. In case �, the fiducials are located in a plane parallel to the ��-plane and � is the diagonal distance of the square arrangement of markers.

(40)

(41)

The principal translational stiffnesses are the eigenvalues of
(39); thus, . The principal rotational stiff-
nesses are the eigenvalues of . Ob-
serve that is the inertia tensor of a system of point particles
of unit mass [35]; thus, the rotational stiffnesses are the principal
moments of inertia and the eigenvectors are the principal axes.
The equivalent rotational stiffnesses are given by (25). Because

, (15) implies that ; thus, the equivalent rotational
stiffnesses are where is the th
principal moment of inertia and is the squared distance be-
tween the target and the th principal axis of inertia. Equation
(38) becomes

(42)

Fitzpatrick et al. gave their expression (46) in [2] as

(43)

where is the expected value of the squared fiducial lo-
calization error, is the distance between the target and the

th principal axis, is the rms distance of the fiducials from
the th principal axis, and is the moment of inertia about
the th principal axis. Equation (42) and (43) are equivalent if
the fiducial localization noise is zero mean ( ) be-
cause by definition .

C. Summary

The parameters of our model are as follows.
• The noise-free fiducial marker locations

, where .
• The covariances of FLE at each marker location.
• The target location where the TRE magnitude is desired.

The method for computing (38) is summarized in the following
list.

1) Compute the stiffness matrix using

(33)–(35).

2) Compute the eigenvalues and eigenvectors of
; see (17). The eigenvalues are the principal

rotational stiffnesses , , and . The eigenvectors ,
, and are the rotational components of the eigen-

twists.
3) Compute the translational components , , and of

the eigentwists using (15).
4) Compute the axis of the screw representation of each eigen-

twist for , 2, 3 using (1).
5) Compute the squared distances , , between the

screw axis and the target location .
6) Compute the eigenvalues of ; see (23). The eigenvalues

are the principal translational stiffnesses , , and .
7) Compute using (38).

IV. EXPERIMENTAL VALIDATION

A. Heteroscedastic Fiducial Localization Noise

We validated (38) by performing simulations similar to the
ones described by Maurer et al. [36]. We used four configura-
tions of fiducial markers, shown in Fig. 2, arranged on a sphere
of radius 100 mm. The input to each simulation was the set of
marker locations parameterized by a scalar length

(see Fig. 2), a target location , and the covariances of the
fiducial localization noise. The output was the squared TRE for
each target. Each simulation was run for 10 000 trials, with the

th trial executing the following steps:
1) Noisy marker locations were generated by adding

Gaussian distributed noise to .
2) was registered to using the HEIV and Horn’s

methods to obtain the registration rotation and transla-
tion .

3) Squared TRE was computed as the dot product
where .

The rms TRE was computed as

.
Consider the location of given in spherical coordinates

where mm is the radial distance, is the az-
imuth angle measured from the -axis, and is the polar angle
measured from the positive -axis. For configurations – ,

radians for each marker (the markers all lie on a great
circle of a sphere with radius of 100 mm); for configuration ,

is a function of and identical for each marker. We defined
four FLE covariance matrices (one for each of the markers )



MA et al.: ESTIMATION OF OPTIMAL FIDUCIAL TARGET REGISTRATION ERROR IN THE PRESENCE OF HETEROSCEDASTIC NOISE 715

Fig. 3. The ratios of simulated to predicted ��� values for fiducial configurations �, �, and� with target location � � ��� �� ��� .

Fig. 4. (Left) Simulated and predicted��� values for fiducial configuration� with target location � � ��� �� ��� . (Right) Ratios of simulated to predicted
��� values for configuration � .

(44)

where the values mm , mm , and
mm were chosen arbitrarily; the fiducial localiza-

tion noise covariances were rotated versions of . For con-
figurations – , the noise covariances were defined as

(45)

where was the rotation about the -axis by angle . For
configuration , the noise covariances were defined as

(46)

where and are rotations of radians about the
- and -axis, respectively. These definitions of the covariances

were chosen arbitrarily to test (38), and do not correspond to
any known real-world scenarios.

The results for configurations , , and , shown in
Fig. 3, demonstrate excellent agreement between the simulated

and (38). We computed the 95% confidence intervals
of using the bootstrap method [37] with 1000
bootstrap replications. The value predicted by the square root
of (38) was always within the confidence interval except for the
smallest value of mm where the marker configurations
approached that of a straight line. This effect can be seen in the
results for configuration , and even more dramatically in the
results for configuration , which are shown in Fig. 4. Several
interesting observations can be made from Fig. 4. First, for the
noise covariances that we used, the HEIV algorithm produced
only slightly smaller values of compared to Horn’s
method. Second, the HEIV algorithm produced worse results
than Horn’s method for values of mm; however, both
methods were unreliable for values of in this range. Third, the
stiffness model overestimated at the smallest values
of when compared to Horn’s method; this occurred because
as the marker configuration approaches that of a line, one of the
principal rotational stiffnesses approaches zero, which causes
the predicted by (38) to grow rapidly.

The results for configurations , , and showed that
the optimal HEIV algorithm produced values be-
tween 0%–20% smaller than the values produced using Horn’s
method. We would like to note that the absolute
values were less than 1 mm for values of mm; thus, the
absolute improvement in was small for the fiducial
marker configurations we examined. Of course, moving the
target location farther away from the center of the fiducial
markers would increase the absolute value of , and the
potential improvement of using the optimal HEIV algorithm
may become significant under these circumstances.
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Fig. 5. Simulated and predicted��� values versus the number of fiducial
markers.

B. Heteroscedastic Noise and Number of Markers

We validated (38) as a function of the number of markers
by performing a simulation similar to the one used in the pre-
vious section. We formed a set of 16 fiducial markers by con-
catenating the markers from configurations , , , and
using arc lengths of and mm respectively
for each configuration; the different arc lengths were needed
to prevent coincident markers. The markers were located on a
sphere of radius 50 mm. We used the noise covariances defined
by (44)–(46). The target location was .

The results are shown in Fig. 5. The results for (38) and the
simulated values of agree to within better than 0.002
mm or 0.7% of the value obtained using (38); all results were
contained within the 95% confidence interval for the mean of
the simulated values.

C. Anisotropic Fiducial Localization Noise

Consider an optical tracking system and a calibrated digi-
tizing stylus like the one shown in Fig. 6. The size of a typ-
ical CRF attached to a stylus used in computer-aided surgery is
small compared to the dimensions of the working volume of the
tracking system. It seems reasonable to assume approximately
identically distributed FLE over all of the markers, as long as the
markers on the CRF are identical and face the same direction.
We choose to model FLE as a zero-mean, anisotropic Gaussian
variable with the largest component being in the viewing direc-
tion of the camera. We also assume that FLE is independent of
the orientation of the CRF relative to the camera. Note that this
assumption is probably not realistic, and was made to illustrate
how the behavior of TRE changes when the orientation of the
CRF changes.

Suppose that a stylus oriented at 0 has its plane per-
pendicular to the viewing direction of the optical tracker (i.e.,
directly facing the tracker). In our simulations, we rotated the
stylus about its -axis from to 45 in increments of 7.5 .
At each angle of rotation, we generated 10 000 sets of measured
marker locations for the CRF. Each measured marker location

was the model marker location rotated by the angle of
rotation and contaminated with zero-mean, additive Gaussian

Fig. 6. Optical tracking system and stylus orientation used in our simulations.
Measurement noise variance in the viewing direction, ��, is typically greater
than those in the ��-plane.

noise of covariance where
(isotropic noise in the -plane), for some scalar
(anisotropic noise in the viewing direction), and

for a constant value mm (con-
stant total noise magnitude). All noise variances were given in
the tracking camera coordinate system. The model marker lo-
cations were registered to the noisy measured marker locations
using Horn’s method, the HEIV method, and a slightly modified
version of an unscented Kalman filter (UKF) algorithm [38]. For
each registration, we computed TRE using the tip of the stylus
as the target. At each angle, we computed the predicted
using (38).

The UKF algorithm, as it was originally described, does not
reliably converge to an accurate solution when using small num-
bers of markers [38]. To briefly review, the algorithm starts with
the identity transformation as its registration estimate. It then
processes the registration points sequentially using an unscented
Kalman filter. Unlike an ordinary filter, it repeatedly processes
the same registration points; i.e., the filter processes the first reg-
istration point, then the first two registration points, and so on,
until the final iteration where all registration points are pro-
cessed. The convergence problem for small numbers of points
can easily be remedied by allowing the algorithm to reprocess
the final set of registration points a few times; for our simu-
lations, we reprocessed the final set of points twice.

1) Stiffness Model Results: The first set of simulations used
the planar CRF shown in Fig. 7; planar configurations are cur-
rently the most common type of CRF used in commercial com-
puter-aided surgical systems.

The second set of simulations were performed using a non-
planar CRF. The CRF had four markers in an irregular tetrahe-
dral arrangement and was modeled on a commercially available
CRF (VersaTrax TT002 series, Traxtal Technologies, Toronto,
ON, Canada).

We observed significant differences in behavior be-
tween the planar and nonplanar CRFs. To verify these results,
we modified the nonplanar Traxtal CRF to a planar CRF by
moving the fiducial marker originally located at to

and performed a third set of simulations.
The results for obtained using the HEIV and UKF

algorithms, and the values predicted using (38) are shown in
Fig. 8. We computed the confidence intervals of the mean of

obtained using the HEIV and UKF algorithms. The
curves produced using (38) passed through most of the confi-
dence intervals. The maximum deviation between ob-
tained using HEIV and that predicted by (38) was 0.009 mm,
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Fig. 7. Planar CRF (left) and nonplanar Traxtal CRF (right) stylus configurations.

Fig. 8. ��� predicted using (38) and��� obtained from simulations using HEIV and UKF registration algorithms for various levels of noise anisotropy.
Shown from left to right are results for the planar, nonplanar Traxtal, and planar modified Traxtal CRF.

Fig. 9. ��� predicted using (38) and��� obtained from simulations using Horn’s method and the HEIV algorithm for the planar CRF. Noise anisotropy
increases from left to right.

which was 1.8% of the predicted value. The maximum devia-
tion between obtained using the UKF algorithm and
that predicted by (38) was 0.022 mm, which was 3.1% of the
predicted value.

The isotropic noise can be predicted using (42) or
(43). The predicted values for the planar, nonplanar Traxtal,
and planar modified Traxtal CRF were 0.684, 0.688, and 0.7181
mm, respectively. These values were inside the simulation con-
fidence intervals.

We observed a strong dependence on rotation angle for
under anisotropic noise with the planar CRFs. The
values actually exceeded the isotropic values for

rotation angles around 0 , even though the total noise magni-
tude was the same for the isotropic and anisotropic cases. The
nonplanar Traxtal CRF produced substantially less variation
in as a function of rotation angle. The peak
values under anisotropic noise occurred at 7.5 rotation but
they did not exceed the isotropic value.

2) Planar CRF Results: The results are shown in
Fig. 9. A peak occurred in the curves at 0 rotation
as the fiducial localization noise became anisotropic. The peak
was large when using HEIV, with changing by a factor
as large as 2.67 between and 0 ( . Horn’s method
always produced the largest for a given rotation angle
and the was always larger than the isotropic case.
HEIV produced values of that were always smaller
than Horn’s method except at 0 rotation. became
smaller than the isotropic case as the rotation angle increased
for HEIV.

We expected the rotational component of to domi-
nate the total value because the tip of the stylus was far from
the centroid of CRF. The mean absolute rotation error curves,
shown in Fig. 10, had the same shape as the curves,
agreeing with our expectations.

The standard deviations (in the three principal camera direc-
tions) of the tip location after registration are shown in Fig. 11.
HEIV and Horn’s method had identical behavior under isotropic
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Fig. 10. Simulation results of mean absolute rotation error using Horn’s method and the HEIV algorithm for the planar CRF. Noise anisotropy increases from
left to right.

Fig. 11. Simulation results of tip error standard deviation using Horn’s method and the HEIV algorithm for the planar CRF. Noise anisotropy increases from left
to right, and the �, �, and � standard deviations are shown from top to bottom.

noise. Horn’s method produced the largest standard deviations
in the - and -directions under anisotropic noise.

3) Nonplanar CRF Results: The results are shown
in Fig. 12. The values predicted using (38) closely
matched the results obtained using the HEIV algorithm. The
peak in the curves occurred at 7.5 rotation as the fidu-
cial localization noise became anisotropic. The peak was much
less pronounced compared to the planar CRF when using HEIV.

Horn’s method always produced the largest for a given
rotation angle and was always larger than the isotropic
case. Unlike the planar CRF, produced using HEIV
was smaller than that produced by Horn’s method for all ro-
tation angles. produced using HEIV with anisotropic
noise was always smaller than that for isotropic noise.

The standard deviations of the stylus tip location after regis-
tration are shown in Fig. 13. HEIV and Horn’s method had iden-
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Fig. 12. ��� predicted using (38) and ��� obtained from simulations using Horn’s method and the HEIV algorithm for the nonplanar Traxtal CRF.
Noise anisotropy increases from left to right. nonplanar Traxtal CRF.

Fig. 13. Simulation results of tip error standard deviation using Horn’s method and the HEIV algorithm for the nonplanar Traxtal CRF. Noise anisotropy increases
from left to right, and the �, �, and � standard deviations are shown from top to bottom.

tical behavior under isotropic noise. Horn’s method produced
the largest standard deviations in the - and -directions under
anisotropic noise.

4) Planar CRF 2 Results: The results, shown in
Fig. 14, were similar to the first planar CRF, thus confirming that
nonplanar CRF configurations lead to superior TRE behavior
when there is anisotropic noise. The values predicted

using (38) closely matched the results obtained using the HEIV
algorithm.

D. Sensitivity to Noise Covariance

The HEIV algorithm requires that the noise covariance be
specified (up to a scalar constant). Although the FLE noise co-
variance can be estimated through laboratory experiments, there
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Fig. 14. ��� predicted using (38) and ��� obtained from simulations using Horn’s method and the HEIV algorithm for the planar modified-Traxtal
CRF. Noise anisotropy increases from left to right.

Fig. 15. Sensitivity of ��� to noise covariance for HEIV algorithm. (Left) Optimal results with matched specified and actual noise covariances. (Right)
Results with fixed specified noise covariance and varying actual noise covariance.

Fig. 16. Sensitivity of��� to noise covariance for HEIV algorithm (Left) Ratio of��� obtained using incorrectly specified noise covariance to optimal
��� . (Right) Ratio of��� obtained using Horn’s method to��� obtained using HEIV with incorrectly specified noise covariance. The white curve
at � � � are the results for correctly specified noise covariance.

remains the possibility that the specified noise covariance does
not exactly match the true noise covariance; in such cases, it
would be desirable that the HEIV algorithm perform no worse
than the least-squares solution. We investigated the sensitivity of
the HEIV algorithm to variations in the true noise covariance by
fixing the specified noise covariance and changing the -com-
ponent of the actual noise covariance. Our simulations used the
nonplanar Traxtal CRF. The specified noise covariance was de-
fined as where mm and

mm. The actual noise covariance used in the simu-
lations was the same as the specified covariance except that
was varied as mm. We examined our re-
sults as a function of the scalar ratio .

The optimal values, obtained by matching the spec-
ified and actual noise covariances, are shown in Fig. 15 along
with the obtained using unmatched covariances. As

expected, obtained using unmatched covariances were
larger than the optimal values. The disparity between matched
and unmatched values appeared to increase as the error
between the specified and actual noise covariance increased.

The results for incorrectly specified noise covariance can be
further clarified by computing the ratio of the optimal
value to the value obtained using the specified noise
covariance; this ratio is shown in Fig. 16. We observed between
11%–22% increase in when the -component of the
noise covariance was overspecified ( ) or underspecified
( ) by a factor of two. These results suggest that the HEIV
algorithm was not extremely sensitive to errors in specifying the
viewing direction of noise covariance when using the nonplanar
CRF.

It may be the case that Horn’s method produces better esti-
mates if the noise covariance is not exactly known. The ratio
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of using Horn’s method and HEIV with unmatched
covariances is shown in Fig. 16. Horn’s method almost always
produced a greater than HEIV with incorrectly speci-
fied covariance. The exception occurred when when the -com-
ponent of the noise covariance was overspecified by a factor of
two.

V. DISCUSSION AND CONCLUSION

We were pleasantly surprised by the similarity between the
values predicted by (38) and the simulated of the
HEIV algorithm. The HEIV algorithm is known to be optimal
under heteroscedastic Gaussian noise. Our simulations using
fiducial configurations – with heteroscedastic noise showed
that (38) reliably predicted except for near co-linear
arrangements of markers; in these cases, (38) overestimated
the value of . The simulations using the stylus CRFs
produced a few instances where the predicted value of
fell outside of the 95% confidence interval of the simulated
value; however, the deviation from the value predicted using
(38) was never more than 0.009 mm (1.8% of the predicted
value) using HEIV, and 0.022 mm (3.1% of the predicted value)
using the UKF algorithm. We believe that the differences were
small enough that they can be attributed to natural variation
in the Monte Carlo simulation results and do not suggest any
serious flaw in our spatial stiffness model.

Our simulations using fiducial configurations – showed
that a least-squares registration algorithm does not necessarily
perform substantially worse than the optimal HEIV algorithm
when there is heteroscedastic measurement noise. We observed
between 0%–20% improvement in the simulation
values when using the HEIV algorithm compared to Horn’s
method. Because (38) and (43) reliably predict we
now have a way to computationally decide between using a
least-squares and optimal algorithm.

We would like to emphasize that our simulations motivated
by optical tracking assumed an FLE model that is too simplistic
to model real tracking systems. These simulations were per-
formed to illustrate the dependence of TRE on the orientation
of a CRF relative to the noise covariances. Experiments using
a tracked pointing stylus and an assumption of isotropic FLE
have suggested that both infrared emitting diodes and retrore-
flective spheres, when used as CRF markers, tend to produce an
increase in TRE when the CRF is rotated away from the viewing
direction of the tracking system [16]. The increase in TRE is be-
lieved to be caused by the markers not behaving as point light
sources [39], which causes the FLE noise to become a function
of rotation angle. We have not attempted to measure the depen-
dency of the distribution of FLE on rotation angle for a tracking
system, nor are we aware of any published results; lacking phys-
ical measurements, we did not attempt to model these affects in
our simulations. The measurement and modeling of FLE is a
possible area of future research.

We observed significant differences in between the
least-squares and optimal registration algorithms when rotating
the CRF during the tracking system simulations. Horn’s method
and the HEIV algorithm had identical worst performances when
the CRF of the stylus was directly or almost directly facing
the tracking camera (rotation angle around 0 ). This result is

Fig. 17. (Left) Tip TRE is worst when the stylus is oriented to face the direction
of greatest noise anisotropy (typically the viewing direction of the camera) be-
cause such an orientation results in the greatest expected rotational error. (Right)
TRE is minimized by orienting the stylus face away from the camera viewing
direction which minimizes the contribution of the rotational error.

easily explained with reference to Fig. 17. Suppose the CRF
is directly facing the tracking system (left side of Fig. 17) and
we rotate the CRF towards or away from the tracking system
cameras. A small rotation about an axis parallel to the -axis
passing through the center of the CRF will cause the noise-free
top and bottom markers to move predominantly in the -direc-
tion. Conversely, measurement noise predominantly in the -di-
rection will induce a rotation parallel to the -axis about the
center of the CRF; such a rotation is magnified into a stylus tip
TRE proportional to the length of the stylus. Because the mag-
nitude of the rotation is determined almost completely by the
largest noise component, the expected TRE is maximized in this
orientation. Note that the measurement noise may also induce a
rotation about an axis parallel to the -axis, but such a rotation
does not cause the tip of the stylus to be displaced; rotation about
an axis parallel to the -axis are minimized because the mea-
surement noise is smallest in the and -directions. Suppose
the CRF is rotated through 90 so that it faces perpendicular to
the tracking camera (right side of Fig. 17). In this case, the rota-
tional errors are determined primarily by the smallest measure-
ment noises (those in the and -directions), and the tip TRE
due to rotational error is minimized. Of course, in this situation,
the CRF would likely be invisible to the tracking system.

Horn’s method, which assumes isotropic noise, always
produced the largest values in our simulations using
anisotropic noise. The variances in the stylus tip location after
registration were also largest for Horn’s method. The HEIV
algorithm produced lower values compared to Horn’s
method even when the noise covariances were incorrectly spec-
ified, except when the covariance was overspecified by a factor
of two. Our results suggest that conservatively underestimating
the anisotropic component of the noise covariance could safely
produce a reduction in stylus tip .

West and Maurer [16] showed that a regular tetrahedron
was the ideal configuration of fiducials for isotropic noise.
Our results showed that a nonplanar configuration was also
preferred over a flat CRF if there was identical anisotropic noise
and an optimal registration algorithm is used. The nonplanar
CRF produced only modest amounts of variation in TRE as a
function of rotation angle. This was in sharp contrast compared
to the planar CRF configurations that produced pronounced
peaks in at 0 rotation. We observed that Horn’s
method, while producing higher values of , produced
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only modest amounts of variation in TRE as a function of ro-
tation angle regardless of the CRF configuration. We observed
no significant advantages for the nonplanar CRF when Horn’s
method was used.

We have studied the case where a registration algorithm is
used to match a model of a CRF to the measurements made by
a tracking system. This approach is appropriate if the tracking
system can measure the CRF fiducials simultaneously or if the
velocity of the CRF is small; otherwise, motion artifacts will
be present in the measured fiducial locations. An alternative
method is to use a Kalman-type filter to perform the tracking,
which removes the need for an explicit registration algorithm.
One such filtering approach has been demonstrated that is ca-
pable of updating the pose of a CRF whenever a single fiducial
location is measured [40], [41].

Two solutions for estimating under anisotropic noise
were recently described by Wiles et al. [14] and Moghari and
Abolmaesumi [15]. Those approaches were superior to ours in
some respects; most significantly, they were able to derive the
covariance of TRE. Our approach only estimates , but it
does so without assuming a suboptimal, least-squares registra-
tion solution. Furthermore, the spatial stiffness analysis gives
the individual contributions of the three translational and three
rotational components of TRE. Lin et al. [27] used the stiff-
nesses as a quality measure for robotic grasps; similarly, the
stiffnesses could be used as a quality measure for fiducial marker
configurations. We believe that our analysis can be extended to
surface-based registration, much like we did for the isotropic
noise case [23].

The covariance propagation approach described by Sielhorst
et al. [17], [18] produces the TRE covariance under het-
eroscedastic noise. We are investigating if their approach yields
an identical estimate of TRE as ours; this study might yield
some insight to determine TRE covariance from a stiffness
approach.

We have previously described a spatial stiffness model for
surface-based registration TRE under the assumption of iden-
tical, isotropic, zero-mean Gaussian noise [23]. We believe that
the surface-based registration model can be extended to the case
of heteroscedastic noise in a similar method to that described in
this article. Validating such a model would require a registra-
tion algorithm capable of accommodating heteroscedastic noise
in the registration points [42].

In summary, we have presented a spatial stiffness model of
fiducial TRE under anisotropic noise, and we have validated the
model using simulations with optimal registration algorithms.
Our results suggest that a significant decrease in
is possible if optimal algorithms are used in the presence of
anisotropic noise, and if the noise covariances are approxi-
mately known.
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